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Abstract

In this paper, we present definitions and some properties of the classical strong two-scale convergence for component-wise

vector or matrix functions in a two-dimensional case.
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Tém tit

Trong bai bao nay, ching téi trinh bay cic dinh nghia va mot s6 tinh chit ctia hdi tu hai-kich thuéc manh c§ dién cho cic

ham vecto hodic ma trin trong mot trudng hop hai chiéu.

Tir khoa: ddng nhit héa hai-kich thudc; hoi tu hai-kich thuéc manh; hai chiéu

1. Introduction

We are given in dimension two, a bounded
reference domain Q = Q! x Q2 € Rx R and a vari-
able x = (x!,x%) € Q. In two-scale homogeniza-
tion theory, strong two-scale convergence can be
viewed as an intermediate property between the
usual (one-scale) weak and strong convergence.

In light of this spirit, we first give a necce-
sary review of the usual weak convergence in
the Hilbert space L?(Q) then the definitions and
properties of the classical strong two-scale con-
vergence for component-wise vector or matrix

functions [1, 2], in a two-dimensional case.

2. Preliminaries

Latin indices are in the set {1,2}. The space
of functions, vector fields in R?, and 2 x 2 ma-
trix fields, defined over Q are represented respec-
tively by italic capitals (e.g. L?(Q)), boldface Ro-
man capitals (e.g. V), and special Roman capitals
(e.g. S).

In the rest of this paper, we use the following
notations [1]:
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Y :=[0,1]? is the reference periodic cell.

* Cy(Q) is the space of functions that vanish
at infinity.

. CSZI(Y) denotes the Y-periodic C* vector-
valued functions in R?. Here, Y-periodic
means 1-periodic in each variable y’,i =
1,2.

* The notation Hll)er(Y), as the closure for

the H'-norm of Cpe.(Y), is the space of
vector-valued functions v € L2(Y) such

that v(y) is Y-periodic in R2.

1
<v>y = m/y v(y)dy

Hyper (Y) := {0 € Hpo (Y) [ (D)), = 0}

* We use - for the canonical inner products
in R? and R?*?, respectively.

* The notation < stands for < up to a multi-
plicative constant that only depends on Q
when applicable.

The Sobolev norm || - || w2 has the form
0

1
7.

2 2
+ ”VUHILZ(Q)) )

12l y12 0 = (1152 0,
here, || vl = lvllzg), where |v| represents
the Euclidean norm of the 2-component vector-
valued function v, and [[Vv|lp2q) := VYl 2q),
where |Vwv| denotes the Frobenius norm of the
2 x 2 matrix Vv. Recall that the Frobenius norm
on L2(Q) is specified by |X[?:= X - X = tr(X" X).

Let € be some natural small scale. For po-
tential applications in homogenization, based on
[3, 4, 5, 6], we consider u.(x) € W(IJ’Z(Q) de-
pending on x! only, that is, u(x) = u.(x!), with
boundary conditions of Neumann type. As re-
marked in [7], we do not distinguish between
a function on R and its extension to R? as a
function of the first variable. It is assumed that

X" . .. . . .
u.(x") =u (—) is a periodic function in x!' with
€

. . x! L .
period €, equivalently, u(?) = u(y’) is a peri-

odic function in y! with period 1. That is, for any
integer k,

ue(xl) = ue(x1 +€) = ue(x1 + ke),

equivalently,

1 1 1
u(x—):u x—+1):u(x—+k1):u(yl+k).
€ €

€

3. Weak convergence

In the Hilbert space L%(Q), we describe the
basic notions of the usual weak convergence,
which is defined below [8].

Consider a sequence of functions u, € L?(Q).
Then, (u,) is said to be bounded in L?(Q) if

limsup/ lue|*dx < ¢ < oo,
e—0 Q
for some positive constant c.

By definition, a sequence (u#(x)) € L2(Q) is
weakly convergent to u(x) € L?(Q) as € — 0, de-
noted by u, — u, if

lim ue(x)-(pdx:/ u-¢pdx, (D)
e—0 /g Q
for any test function ¢ € L2(Q).
Furthermore, a sequence (u) in L2(Q) is
called strongly convergent to u € L?(Q) as € — 0,
denoted by u, — u, if

lim ue-vedx:/u-vdx, 2)
e—0 /o Q
for every sequence (v¢) € L?(Q) which is weakly
convergent to v € L2(Q).

The following are well-known weak conver-
gence properties in L2(Q).

(a) Any weakly convergent sequence is bounded
in L*(Q).

(b) Compactness principle: any bounded se-
quence in L?*(Q) has a weakly convergent
subsequence.

(c) If a sequence (1) is bounded in L?>(Q) and
(1) is satisfied for all ¢ € C3°(Q), then u, —
ue L*(Q).
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(d) If u, — ue L?(Q) and v, — v € L*(Q), then

lim ue-vedx:/u-vdx.
e—0 Q Q

(e) Weak convergence of (u.) to u in L%(Q) to-
gether with

hm Iuel dx = /Iul dx
€—>

is equivalent to strong convergence of (u,) to
uin L*(Q).

Hereafter, we denote by Y = [0, 112 the cell of
periodicity. (In our paper, a periodic cell has the
form Y =[0,1] x [0,1].) The mean value of a 1-
periodic function w(y') is denoted by (), that
is,

(p) = / w(yHdy'.

Recall that y! = ¢ 1x!, and we do not distinguish
between a function on Y! and its extension to Y
as a function of the first variable only.

Also, in our paper, the symbol L2(Y) is used
not only for functions defined on Y but also
for the space of functions in L?(Y) extended by
1-periodicity to all R?. Similarly, C53,.(Y) rep-
resents the space of infinitely differentiable 1-
periodic functions on the entire R?.

For later use, we need the following classical
result.

Lemma 3.1 (The mean value property). Let
h(y") be a I-periodic function on R and h €
L2(Y'Y). Then, Jor any bounded domain ), there
holds the weak convergence

1
h(x?) — (WY inI*Q) as e—0. (3)

Proof. The proof is based on property (c) and
can be found in [8].

4. Weak two-scale convergence

We have the following definition of weak
two-scale convergence in L?(Q) (introduced by
in 1989 by Nguetseng) [1, 2].

Definition 4.1. Let (u;) be a bounded sequence
in L>(Q). If there exist a subsequence, still de-
noted by ue, and a function u(x, y') € L2(Qx Y1),
where Y = [0,1] such that

1
hm ue(x) ((/)(x)h( )) dx
4
:/ u(x, y) (@@ h(yh) dxdy!
QxYl

for any ¢ € C3°(Q) and any h € Cl‘,"e’,(Y ), then
such a sequence u. is said to weakly two-scale
converge to u(x, yl). This convergence is denoted

by uc(x)—u(x,yh).

For vectors u., equation (4) implies
1

lim | u.(x)-® (x, —) dx

e—0 Q €

%)
:/ u(x,y") - @(x,y")dxdy',
Qxyl

for every @ € LZ(Q;Cpel‘(Yl)), whose choice is
explained in [9] (p. 8).

5. Strong two-scale convergence

The further extension of the class of test func-
tions in Definition 4.1 leads to the basis of the
following notion of the classical strong two-scale
convergence [8, 10].

Definition 5.1. A bounded sequence u, € [2(Q)
is called strongly two-scale convergent if there
exists u=u(x,y') € L>(Q x Y) such that

Ue(X) Ve (x) dx
o (6)
:/ u(x,yl)v(x,yl)dxa?y1
QxYy!

lim
e—0

for any bounded sequence ve(x) € L*(Q) such
that v.(x) — v(x, yl) € [2(Q). This convergence
is denoted by u.(x)— u(x, yl).

For vector (or matrix) u,, equation (6) im-

plies

lim [ uc(x)-ve(x)dx
:/ ux,yH)-vx, yHdxdy'.
QxYyl
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In the next well-known results, weak and
strong two-scale convergence can be viewed as
intermediate properties between the usual (one-
scale) weak and strong convergence.

Proposition 5.2. Let (u.) be a sequence in L (Q)
and ue L2(Q x YY), Then,

(i) ue—uin L*(Q) = u.—uin >(QxY),

whenever u is independent of y*, the con-
verse also holds,

(i) ue— in 2QxYYHY = ue—uin L>(Qx
Yh,

(iii) ue — uinl?>QxYH) = u —
[y ut,yhdytin L2(Q).

Proof. For (i), the proof is readily followed from
Definition 4.1, the mean value property (3), and
the property (d) of convergence in L.

For (ii), it is obvious. Indeed, it suffices to
take, in Definition 5.1,

ve(x) = p(x)he xh,

¢ e CP(Q),he L?(Y'Y), and recall (3), to derive
(4) as desired. Moreover, from u,— u in L?(Q x
Y1) (6), taking v, = u,, one obtains the relation

lim/lue(x)lzdx:/ Iu(x,yl)lzdxdyl.
€=0/q Qxy!
)

For (iii), by the definition of weak two-scale
convergence 4.1, it follows that
%!
lim | u.(x)® (x, —) dx
e—0 Q €

9)
:/ u(x, yHox, yhdxdy',
QxY!

for every @ € L*(Q; Cper(Y'!)). Choosing @ =1 in
(9) and applying the property (c) of weak conver-
gence, one obtains

ue(x)A/lu(x,yl)dy1=<u(x,-)>, (10)
Y

which implies that one can reach the usual weak
limit from the two-scale limit by taking the aver-
age over the cell of periodicity.

The converse of (i) is also true as follows [8].

Lemma 5.3. Weak two-scale convergence
Ue(x) — u(x, yl) together with the relation (8)
implies strong two-scale convergence ug(x) —
u(x, y).

Proof. The proof is based on [8]. Consider an
arbitrary subsequence (still denoted by €) € — 0
such that there exist limits

lim/ ue(x)ve(x)dx:a,lim/Ive(x)lzdx:,B,
e—0 Q e—0 Q

where v.(x) — v(x, yl). Then, using the lower
semicontinuity property [8] for tve + u., we ob-
tain

lim Itve(x)+u€(x)|2dx
e—0 Q

2/ |tv(x,y1)+u(x,yl)lzdxdyl.
QxY!

Applying (8), we get

t2/3+2ta2 tz/ |v|2dxdy1
QxYyl
+2t/ uvdxdy'.
QxYyl
Hence,

2t(a—/ uvdxdyl)
QxYyl

> 12 (—,6+/ Ivlzdxdyl).
QxYyl

On the right hand side of this inequality, we ap-
ply the lower semicontinuity property [8] again
for v.. Then, with the arbitrariness of ¢, we must

have
a:/ uvdxdy',
Qxyl

which is our desired result.

The following theorem is stated and proved
in [8].

Theorem 5.4. Let u.(x) € L*(Q), uc(x) —
u(x, y1). Suppose in addition that u(x,y') is a
Carathéodory function, u(x,y') < @y(y!), ®g €
L*(Y1). Then,

(11)

lim [ |u.(x)— ux,e 'xHPdx=0.
e—0 Q
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