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Abstract

Land surface temperature (LST) is a crucial parameter for assessing the urban thermal comfort, especially in the
context of climate change and urban expansion. This study presents a machine learning-based method for geospatial
modeling of urban LST. The topographical and urban morphological features are employed as explanatory variables. LST
data retrieved from the thermal band of Landsat-8 imaginary is used as the dependent variable, which is modeled by the
extreme gradient boosting machine regressor (XGBoost). The urban center of Hue city is selected as the study area to
apply the proposed framework. Google Earth Engine (GEE) platform is employed to retrieve the topographical data,
including the elevation, slope, and aspect. A land use/ land cover (LULC) map for the study area is constructed via a
Random Forest model and the spectral bands of the Sentinel-2 imaginary. The LULC data classification is performed in
GEE platform. Experimental results point out that XGBoost can model the spatial variation of urban LST with a mean
absolute percentage error 0f4.21% and a coefficient of determination of 0.72. Among the explanatory variables, the built-
up density strongly correlates with LST. The factors of green space density and waterbody density have apparent negative
correlations with the predicted output, demonstrating their cooling effects in the study area. The findings in this study
provide more insights into the spatial distribution of LST in Hue City, helping planners in urban planning and mitigating
the negative effects of urban heat island phenomenon.

Keywords: urban land surface temperature; topographical features; urban morphology; remote sensing; XGBoost.
Tém tit

Nhiét d6 bé mat dit 1a mot théng s6 quan trong dé danh gia nhiét do do thi, dic biét 1a trong bdi canh bién dbi khi hau
va qua trinh mo rong cta cac do thi. Bai bao clia chung t6i trinh bay mot phuong phéap dua trén may hoc dé 1ap mé hinh
khong gian dia Iy clia nhiét ¢ bé mat dat do thi. Cac dac diém hinh thai dia hinh va do thi duoc str dung 1am bién s anh
huong. Dit liéu nhiét d6 bé mat dat thu dwoc tir dai nhiét cua vé tinh Landsat-8 thu thap dugc st dung lam bién s6 dugc
md hinh héa bang phuong phap XGBoost. Thanh phd Hué dwoc chon lam khu vuc nghién ciru dé :ap dung phuong phap
dé xuét. Nén tang Google Earth Engine (GEE) dugc sur dung dé thu thap dir liéu dia hinh, bao gom do cao, do déc, va
huéng. Ban db sir dung 16p phit dit cho khu vue nghién ciru duge xay dung thong qua mé hinh Ring ngau nhién va cac
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dai quang phé cua vé tinh Sentinel-2. Phén loai dit liéu 16p phu dét dugc thyuc hién trén nén tang GEE. Két qua tinh toan
chi ra rang XGBoost c6 thé mo phong su blen dong ctia nhiét do bé mat do thi vai sai s6 phan tram tuyét doi trung binh
13 4,21% va hé sb xac dinh 1a 0,72. Trong s0 cac bién anh huong, mat do xdy dung c6 moi tuong quan manh nhat véi
nhiét d6 bé mat do thi. Cac yéu td vé mat do khong gian xanh va mat do khdi nuédc c6 mbi tuong quan 4m véi bién duogc
mo phong; diéu nay chi ra tac dyng lam giam nhiét do bé mat cua chiing trong khu vuc nghién ctru. Nhimg phat hién
trong nghién ctru nay cung cép thém thong tin chi tiét vé sy phan bd khong gian cta nhiét d6 bé mit d6 thi tai thanh phd
Hué, gitp céc nha hoach dinh trong quy hoach d6 thi va giam thiéu tac dong tiéu cuc ciia hién tuong dao nhiét do thi.

Tir khéa: nhiét 6 bé mit dat do thi; dac diém dia hinh; hinh thai do thi; vién tham; XGBoost.

1. Introduction

The fast pace of urban expansion and global
warming has urged urban planners to investigate
spatial variations in wurban land surface
temperature (LST) and their drivers [1]. As
urban areas expand, natural landscapes, such as
green spaces, are increasingly replaced by
impervious surfaces such as asphalt roads,
concrete structures, and built infrastructure.
These materials exhibit low albedo and high
thermal mass, absorbing a substantial proportion
of solar radiation. This leads to prolonged heat
retention, with considerable difference in
temperature between impervious surfaces and
vegetated areas.

The loss of green spaces inevitably intensifies
thermal stress; it is because urban parks and tree
canopies normally provide cooling through
evapotranspiration. However, many cities have seen
vegetative cover decline during rapid expansion
phases. As pointed out in [2], the proportion of
vegetation cover in urban areas has significantly
reduced, from a median of 47% (in 2000) to a
median of 42% (in 2015). The changes in LULC
essentially alter the thermal properties and dynamics
of urban centers, making the urban core significantly
warmer than the surrounding rural areas. Therefore,
understanding these spatial relationships between
LST variation and its governing factors through GIS-
based modeling is crucial for formulating targeted
mitigation strategies, including construction density
regulation, development of green infrastructure, and
promotion of environmental friendly materials [3].

The combined effect of urban topography and
been shown to

morphology has impose

significant impacts on the variation of LST. This
complex relationship involves various factors
that dictate how urban areas absorb, retain, and
dissipate heat. The primary drivers of LST
variation include built-up density and green
space density. Moreover, topographic features
(e.g., elevation, slope, and aspect) also
significantly affect the spatial distribution of
LST. To understand the thermal behavior of a
city, it is required to carry out the analysis of
these factors to their functional
relationships with the urban LST.

reveal

Machine learning has been successfully
employed for geospatial modeling of the urban
LST. This method provides robust and capable
methods to analyze complex spatial patterns and
relationships in GIS datasets. By leveraging
multi-layered data, machine learning algorithms
can handle non-linear interactions between
explanatory variables and predict LST with good
accuracy. Advanced machine learning models
pave the way for the development of data-driven
approaches that can be applied across different
urban settings. These models are highly useful
for policymakers and urban planners in the tasks
of designing targeted interventions for UHI
mitigation.

In recent years, Google Earth Engine (GEE)
provides a powerful cloud-based platform
designed for large-scale geospatial analysis.
GEE offers unparalleled access to a vast source
of satellite imagery and geospatial datasets.
GEE's scalability and ease of use allow
researchers to efficiently model and predict
urban LST. This capability is particularly
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valuable for urban planning and sustainable
development. Data of LST and its influencing
factors can be easily extracted from various
datasets in GEE, including Landsat 8 imaginary,
Sentinel-2 imaginary, and Shuttle Radar
Topography Mission (SRTM).

This study relies on machine learning, remote
sensing data, and geospatial data analysis to
model the spatial variation of urban LST in Hue
City, Vietnam. The GEE platform serves as a
critical tool for retrieving and processing
relevant remote sensing data. Random forest
classifier is employed to construct the LULC
map. Based on this map, the features of bare land
density, built-up density, green space density,
waterbody density, and Shannon Entropy are
computed to characterize the urban morphology
in the study area. These variables provide crucial
insights into the spatial distribution and
complexity of urban structures in Hue City,

107°30.000'E  107°33.000'E

which are crucial for understanding how
different land cover types influence LST.

2. Research methods and materials

2.1. The study area and remote sensing datasets

Hue City, located in the Central Coast region
of Vietnam, serves as the capital of Thua Thien
Hue province. Hue is widely recognized as a
world cultural heritage city due to its rich
historical background and vibrant cultural
traditions. The region is home to the Complex of
Hue Monuments, which was the first site in
Vietnam to be recognized by UNESCO as a
World Cultural Heritage. In recent years, Hue
City has faced numerous challenges related to
climate  change, experiencing frequent
heatwaves that have intensified extreme heat and
drought conditions. Accordingly, the urban
center of Hue City is selected as the study area

of the current study.
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Figure 1. The study area shown as a true-color composite from Sentinel-2 bands (Dataset provider: European
Union/ESA/Copernicus)

In the study area (refer to Figure 1), the
combination of high population density and
intensified urban LST causes various negative

effects due to the UHI phenomenon. The dense
infrastructure  and  economic  activities

collectively escalate heat retention. This fact
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results in prolonged periods of extreme heat.
Therefore, it is essential to investigate the spatial
variations in urban heat stress within Hue City
with respect to urban morphology and
topographical features. This analysis can offer
valuable insights into the local temperature

patterns and significantly assist urban planning
strategies. To support the geospatial modeling of
urban LST in Hue, this study has collected
remote sensing data from Landsat 8, Sentinel-2,
and NASA SRTM (refer to Table 1).

Table 1. Remote sensing datasets

Dataset Time period Bands Resolution
Landsat 8 Level 2, 05/01/2024 —09/30/2024 SR 4, SR 5, 30 meter
Collection 2, Tier 1 05/01/2025- 08/14/2025 and ST B10 clers
NASA. SRTM Digital Elevation 30 meters
Elevation 30m

10 meters (B2, B3, B4,
B2, B3, B4, BS, _i'he

Sentinel-2

01/01/2024 — 08/14/2025 B6, B7, B8, B8A,

20 meters (B5, B6, B7,

B11,B12 B8A, B11, and B12)

2.2. Retrieval of wurban land
temperature from Landsat 8 imaginary

surface

The thermal band of Landsat 8 imaginary was
used to obtain the LST data. The data were
filtered for the dry seasons of 2024 and 2025 (up
to August 14, 2025). The LST map is prepared
in QGIS software (available at https://qgis.org/)
and is shown in Figure 2. The process of
preparing the map involved several steps, which

are implemented in GEE’s code editor. First, the
spectral band values from Landsat 8 were
converted into spectral radiance [4]. Next, to
obtain the emissivity-corrected LST, land
surface emissivity and the Normalized
Difference Vegetation Index (NDVI) needed to
be calculated [5,6]. The NDVI was calculated
using the 4th (red) and 5th (near-infrared) bands
of Landsat 8.

0 25 5km
|-

A

LST (°C)

P 52.40
W 18.41

Figure 2. Land surface temperature in the study area
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2.3. Topographical and urban morphological
features

Topographical features, such as elevation,
slope, and aspect, significantly influence the
spatial variation of urban LST. Elevation
generally exhibits a negative correlation with
LST, as higher altitudes tend to associate with
cooler temperatures. Slope also affects the LST
variation as solar
radiation exposure. Aspect influences LST

solar exposure. To

steeper terrain reduces

through variations in
effectively model LST, it is required to take into

account the LULC in the study area. The LULC
map in this study is computed in GEE with the
Random Forest classifier and Sentinel-2 data.
The areas (km?) and the proportion (%) of each
LULC class in the study area are summarized in
Table 2. Moreover, urban morphological
features, including bare land density, built-up
density, green space density, and waterbody
density have been demonstrated to be critical
LST influencing factors. These density maps are
computed via a morphological mean filter with
a radius of 3 pixels.

Table 2. Areas and proportions of LULC classes

LULC Class Area (km?) Proportion (%)

Bare land 36.97 13.87
Built-up 33.90 12.72
Green space 156.14 58.58
Waterbody 39.53 14.83

Moreover, for assessing urban sprawl and
identifying areas of compactness in urban areas,
this study relies on Shannon entropy. This index
is calculated from the aforementioned LULC
map. Herein, the larger the Shannon entropy, the
more dispersed the urban area. Therefore,
Shannon entropy can offer more insights into the
urban morphological features in Hue City and
should be used in the LST model. The reason is
that areas with high entropy values (indicating
dispersed landscapes) may exhibit different
thermal patterns compared to areas with low
entropy  values (demonstrating  urban
compactness). The nine explanatory variables
are presented in Figure 3. All maps are

resampled to the spatial resolution of 30 meters.

2.4. Extreme gradient boosting machine
(XGBoost) regressor

The XGBoost [7] is a powerful machine
learning model that has shown significant
potential in urban LST modeling. This machine
learning approach is widely used in geospatial
data analysis due to its high accuracy,
robustness, and fast computation. XGBoost
often excels in handling complex datasets by
efficiently learning nonlinear relationships
between variables. In the context of LST
modeling, XGBoost can be used to generalize
the mapping function between LST and its
influencing factors. Hence, this method is
particularly useful in urban areas with complex
topographical and urban morphological features.
In this study, XGBoost is implemented with the
Python toolbox provided at
https://xgboost.readthedocs.i0/.
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Figure 3. Explanatory variables

3. Results and discussion

The XGBoost model is used to construct a
functional relationship between LST and the
nine explanatory variables. To generate the
dataset, 50,000 data points in the study area are
randomly sampled. This dataset is then divided
into a training (70%) and a testing set (30%).
Accordingly, 35,000 samples were used to train
the model; 15,000 samples were employed to

inspect the generalization properties of the
model. In addition, the implementation of the
XGBoost regressor requires the setting of the
model’s hyper-parameters: the number of
estimators, the maximum tree depth, the learning
rate, the Lo-regularization coefficient, and the
Li-regularization coefficient. Via several trial-
and-error runs, the suitable values for those

hyper-parameters are identified and reported in
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Table 3. The prediction performance of the
machine learning model is reported in Table 4.
In the testing phase, XGBoost attains
satisfactory outcomes with a RMSE of 1.99, a
MAPE of 4.21%, a MAE of 1.50, and a R* of
0.72. As observed from Table 4, the difference
in performance between the training and testing
phase is not significant. Therefore, it can be seen

that the trained model is not overfitted. The
prediction outcomes of XGBoost are further
visualized via the scatter plots in Figure 4. As
can be seen from the figure, the major proportion
of the prediction results is scattered around the
line-of-best-fit, demonstrating good predictive
performance of the model.

Table 3. Hyper-parameter setting

Number of Maximum tree  Learning L>-regularization Li-regularization
estimators depth rate coefficient coefficient
350 6 0.15 0.1 0.0001

Table 4. Prediction performance

RMSE MAPE (%) MAE R?

Phase
Training 1.55
Testing  1.99

3.33
4.21

1.18 0.83
1.50 0.72
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Figure 4. LST prediction results in the training and testing phases
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To inspect the effect of the input variable on
the model’s output, this study relies on the
Shapley Additive exPlanations (SHAP) coupled
with tree-based models [8]. SHAP is a popular
method for interpreting the predictions of a
machine learning model. It is inspired from the
cooperative game theory to explain how each
feature contributes to a model's output by
comparing predictions with and without that
feature. Using SHAP, it is able to obtain
detailed,
predictions by quantifying the contribution of
each input feature. The impact plot, obtained

local explanations of individual

from SHAP, is presented in Figure 5. Both urban
morphology and topography show substantial
influences on the variation of LST in the study
area with the built-up density obtaining the 1*
rank and waterbody density attaining the 2™
rank. The elevation, bare land density, and slope
obtain the 3™, 4% and 5" ranks, respectively.
The factors of Shannon Entropy and LULC are
less important than those previously mentioned
factors. Meanwhile, the influence of Shannon
entropy is not as substantial as that of other
variables characterizing the urban morphology.
It is also apparent that built-up density and bare
land density positively correlate with LST.
Meanwhile, water body density and green space
density demonstrate negative correlations with
the target variable. This fact implies the
evidential cooling effect of water bodies and
green space patches in the study area.

4. Conclusion

This study has presented a machine learning-
based approach for spatial modeling of urban
LST in Hue City. The nine variables,
characterizing the urban morphology and
topography,
factors. XGBoost regressor is used to generalize
a model capable of predicting the spatial
variation of urban LST. Based on XGBoost and
SHAP analysis, it can be concluded that the

are employed as influencing

urban morphology influences the urban heat
patterns in Hue City with built-up density and
waterbody density are the most influential
variables. The analysis conducted with SHAP
also reveals notable findings regarding the
relationship between urban features and LST.
The findings in this study can significantly assist
urban planners in enhancing sustainable
development and mitigating the impacts of
urban expansion.
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