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Abstract 
This work deals with port-Hamiltonian-based modelling of dynamical systems with application to electrical systems 

whose dynamics are affine in the control input. Two pH models of physical interest are proposed and compared, the first 

one is established with a series RLC circuit while the second one is obtained with a parallel RLC circuit. As the energy 

dissipation is due to the resistor, both models are associated with a quadratic Hamiltonian defining the total energy. 

Importantly, the circuit structure affects the pH formulation. Numerical simulations are carried out to illustrate the 

developed results. 

Keywords: Electrical circuit; port-Hamiltonian representation; energy dissipation. 

Tóm tắt 
Bài báo xem xét vấn đề mô hình hóa Hamilton cổng của các hệ động lực với ứng dụng cho các hệ thống điện mà động 

lực là affine theo đầu vào điều khiển. Hai mô hình Hamilton có ý nghĩa vật lý được đề xuất và so sánh, biểu diễn thứ nhất 

được thiết lập với một mạch RLC mắc nối tiếp trong khi biểu diễn thứ hai nhận được với một mạch RLC mắc song song. 

Vì tiêu tán năng lượng gây ra do điện trở, cả hai mô hình được kết hợp với một hàm Hamilton toàn phương mô tả năng lượng 

tổng. Điểm thú vị là cấu trúc mạch ảnh hưởng kết quả thiết lập. Mô phỏng số được thực hiện để minh họa các kết quả.  

Từ khóa: Mạch điện; biểu diễn Hamilton; tiêu tán năng lượng. 

1. Introduction

This paper deals with dynamical systems [1,

2] whose dynamics are described by a set of

Ordinary Differential Equations (ODEs) and

affine in the input u as follows:

*Corresponding author: Hoang Ngoc Ha 
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 ( ) ; ( 0) init
dx f x g x u x t x
dt

    , (1) 

where ( )x x t is the state vector contained in 

the operating region D ℝn,  f x ℝn

expresses the smooth function with respect to the 
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vector x . The input-state map and the control 

input are respectively represented by ( )g x
ℝnxm and u ℝm. Electrical, electromechanical 

or biochemical systems, etc. are typical 

examples of such systems [3-5]. 

From the energy-based point of view for 

modelling, writing the original dynamics (1) into 

the port-Hamiltonian (pH) representation is 

crucial to express the transformation of energy 

within the system [6, 7]. In other words, once a 

canonical form [8, 9], i.e. the pH representation 

of the dynamics (1), is somehow found, then a 

so-called energy balance equation (EBE) can be 

obtained. In turn, this equation allows 

expressing the transformation of energy, 

including the energy supply, storage and 

dissipation, etc. On the other hand, the resulting 

pH representation is well suited for passivity-

based control [10, 11], control by 

interconnection [12-14], energy/power shaping 

control [6, 15] or setpoint tracking control [16]. 

Obtaining the pH representation of given 

dynamics is a key challenge in the structural 

modelling framework, and it is the main focus of 

this work. 

This paper is organized as follows. Section 2 

provides a brief overview of the pH 

representation of dynamical systems. Section 3 

is devoted to the pH formulation of two dynamic 

electrical systems. Further discussions are also 

included. Section 4 ends the paper with some 

concluding remarks.  

Notations: The following notations are 

considered throughout the paper: 

 ℝ is the set of real number.

  is the matrix transpose operator.

 m and ( )n m n are the positive integers. 

 initx is the initial value of the state vector. 

This section briefly recalls the fundamentals 

of port-Hamiltonian systems [8, 9] (see also 

[17]). Assume that the function  f x  verifies

the so-called separability condition [7, 18], that 

is,  f x  can be decomposed and expressed as

the product of some (interconnection and 

damping) structure matrices and the gradient of 

a potential function with respect to the state 

variables, i.e., the co-state variables: 

     
 J R

H x
f x x x

x


    
,  (2) 

where  J x  and  R x  are the n n  skew-

symmetric interconnection matrix (i.e. 

   J J 
 x x ) and the n n symmetric 

damping matrix (i.e.    R R 
x x ),

respectively while represents 

the Hamiltonian storage function of the system 

(possibly related to the total energy of the 

system). Furthermore, if the damping matrix 

 R x  is positive semi-definite, i.e.

 R 0x , (3) 

then the original dynamics (1) is said to be a 

port-Hamiltonian (pH) representation with 

dissipation [8, 9]. Equation (1) is completed with 

the output and then rewritten as follows: 

   
 

 

 
 

J R




      


 

 

H xdx x x g x u
dt x

H x
y g x

x

     (4) 

where y  is the output. 

It can be clearly seen for the pH model 

defined by Eqs. (3) and (4) that the time 

derivative of the Hamiltonian storage function 

 H x satisfies the energy balance equation 

(EBE) [6]. 

2. An introductory overview of port-
Hamiltonian systems 

:H x  ℝn ℝ
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   
 

 

dissipation

R



  

   
  

dH x H x H x
x u y

dt x x
.   (5) 

It can be shown from Eq. (3) that the energy 

dissipation, defined by 

 
 

 R 0


  
   

  

H x H x
d x

x x
 (6) 

is negative semi-definite. Hence, it represents a 

loss of energy due to resistive elements. The 

EBE (5) becomes: 

 

supplied power
stored power


dH x

u y
dt . (7) 

From a physical point of view, inequality (7) 

implies that the total amount of energy supplied 

from external source is always greater than the 

increase in the energy stored in the system. 

Hence, the pH system (4) is said to be passive 

with input u  and output y  corresponding to the 

Hamiltonian storage function  [2] (we also

refer the reader to [16] for further discussion). 

In what follows, series and parallel 

circuits are used to illustrate and show the way 

to achieve a pH representation from given 

dynamics. For that purpose, the following 

lemma is adopted. 

Lemma 1. Given a square matrix A . It 

follows that 

skew-symmetric symmetric

2 2

  
 

A A A AA . 

circuit 

3. Two case studies

3.1. Case study 1: A series

3.1.1. Circuit description  

We consider next a simple electrical system, 

which is the series  circuit as sketched in 

Figure 1. 

Before proceeding any further, we remind 

Kirchhoff's voltage law  

L R Cu u u V   , (8) 

and constitutive equations considered for three 

passive elements 

the resistor : ,

the inductor : and ,

the capacitor : and ,





 



 



 


R R

L
L L L

C
C C C

R u Ri
dL Li u
dt

dqC i q Cu
dt

 (9) 

where Cq and L are the charge stored in the

capacitor C  and the magnetic flux linkage 

through the inductor L , respectively; while i  is 

the electric current passing through the circuit 

(   R C Li i i i ) and Lu is the voltage of the

inductor L  (similarly for Ru  and Cu ).

3.1.2. Port-Hamiltonian formulation 

Let  : ,C Lx q 


 be the vector consisting of

the charge Cq  and the magnetic flux linkage L

. It can be shown from Eq. (9) that   C
L

dqL
dt

. 

From Eqs. (8) and (9), one has [6, 20]: 

1C
L

dq
dt L

 , (10) 

1L
C L

d Rq V
dt C L


    . (11) 

Proposition 1 ([20]). Equations (10) and (11) 

constitute a pH representation described by (4) 

with  : ,C Lx q 


 and

Figure 1. A series circuit [19]. 
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 
0 1

J
1 0

 
  

 
x , (12) 

 
0 0

R
0
 

  
 

x
R

, (13) 

 
0

,
1

g x  
  
 

(14) 

u V , (15) 

1
 Ly

L
.    (16) 

Furthermore, the system is passive with the 

Hamiltonian defined by 

  2 21 1
2 2

 C LH x q
C L

. (17) 

Proof. It follows from Eqs. (1), (10) and (11) 

that  

1

1

L

C L

Lf x
Rq

C L





 
 

  
   
 

, which can be 

rewritten as  

1
0 1

1 1

C

L

q
Cf x

R
L


 
  

   
    

 
 

. Let 

0 1
1

 
  

  
A

R
, one may write J R A using 

Lemma 1. This concludes the proof. 

Remark 1. The Hamiltonian (17) is equal to 

the total energy of the system (i.e., it 

characterizes the amount of energy stored in 

capacitor and inductor). Hence it has the unit of 

energy [20]. 

Remark 2. From Eq. (6), it follows that 
2

21 0
 

     
 

Ld R Ri
L

, (18) 

which is precisely the power dissipated in 

the resistor. 

3.2. Case study 2: A parallel circuit 

3.2.1. Circuit description 

Next, we consider a parallel  circuit as 

sketched in Figure 2. 

Kirchhoff's current and voltage laws in this 

case are 

 R Ci i i , (19) 

 L Cu u V . (20) 

Note that  Li i and R Cu u . 

3.2.2. Port-Hamiltonian formulation 

Using Eqs. (9), (19) and (20), one obtains [6]: 

1 1
  C

C L
dq q
dt RC L

, (21) 

1
  L

C
d q V
dt C

. (22) 

Proposition 2. Equations (21) and (22) 

constitute a pH representation similar to that of 

Proposition 1 except 

 
1 0

R
0 0

 
 
 
 

x R . (23) 

Proof. It follows from Eqs. (1), (21) and (22) 

that  

1 1

1


 
  

  
  
 

C L

C

q
RC Lf x

q
C

, which can be 

Figure 2. A parallel circuit. 
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rewritten as  

11 1
11 0 

 
     
     

 

C

L

q
Cf x R

L

. 

Consider 

1 1

1 0

 
 
 
 

A R , one may write

J R A using Lemma 1. This concludes the 

proof.

Remark 3. The Hamiltonian in this parallel 

RLC circuit is also equal to the total energy of 

the system. Hence it has the unit of energy. 

Remark 4. From Eq. (6), it follows that 

2
21 1 1 0 

     
 

C Cd q u
R C R

, (24) 

which is also equal to the power dissipated in 

the resistor. This is because the damping matrix 

 R x now has a similar structure (see Eqs. (13) 

and (23)) and 2 2 21 1
    C R Ru u Ri

R R
. 

Remark 4. For the case when the inductor is 

not ideal, i.e. it can be considered as a pure 

inductor connected in series with a resistor, the 

results in Propositions 1 and 2 remain valid with 

adequate modifications. For example, it can be 

shown using the same arguments that 

 
0 0

R
0
 

  
 L

x
R R

for the series 

circuit, where LR is the resistance of the 

inductor. 

Table 1 summarizes the main features of the 

two proposed pH formulations. 

Table 1. Features of the two pH formulations. 

The pH model with the series circuit The pH model with the parallel circuit 

x  , 

C Lq  , 

C Lq

 J x is given by Eq. (12) has the same form 

 R x is given by Eq. (13) given by Eq. (23) 

 g x is given by Eq. (14) has the same form 

u is given by Eq. (15) has the same form 

y is given by Eq. (16) has the same form 

 H x is given by Eq. (17) 

(unit of energy) 
has the same form 

It is important to note that the energy 

dissipation in both formulations is strongly 

related to the value of the resistive element of the 

circuit, that is, the resistor. For the sake of 

illustration, Figure 3 shows the time evolution of 

state variables, while Figure 4 shows the 

dissipation of the two circuits where u  is the 

Heaviside function (i.e. the unit step function) 

and the circuit elements are chosen as 

0.5( ) R , 6.25(H)L  and 4(F)C  [19] 

(we refer the readers to Appendices A and B for 

the Simulink models). Unlike the the parallel 

 circuit, the magnetic flux linkage through 

the inductor (or, equivalently, the current) of the 

series  system is equal to 0 at permanent 

phase, there will be no dissipation in the resistor. 
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Figure 3. Time evolution of the states. 

Figure 4. Dissipation of the two circuits. 

parallel and 

Appendix A. The Simulink model of the series  circuit 

4. Conclusion 

In this paper, the pH formulations of transient 
parallel and series RLC  circuits are proposed 
and compared. The resulting Hamiltonian 
representations admit the quadratic Hamiltonian 
storage functions, which have the unit of energy 
while the energy dissipation is strongly related 
to the resistor. It remains now to adapt the 
setpoint tracking control theory [16] to stabilize 
the systems at a desired setpoint. 
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Appendix B. The Simulink model of the parallel  circuit 
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