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Abstract

This work deals with port-Hamiltonian-based modelling of dynamical systems with application to electrical systems
whose dynamics are affine in the control input. Two pH models of physical interest are proposed and compared, the first
one is established with a series RLC circuit while the second one is obtained with a parallel RLC circuit. As the energy
dissipation is due to the resistor, both models are associated with a quadratic Hamiltonian defining the total energy.
Importantly, the circuit structure affects the pH formulation. Numerical simulations are carried out to illustrate the
developed results.
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Tom tat

Bai bao xem xét vin d& mo hinh héa Hamilton cong ciia cac hé dong luc voi ing dung cho cac hé théng dién ma dong
luc 1a affine theo déu vao di€u khién. Hai mo hinh Hamilton ¢6 y nghia vat Iy dugc dé xuat va so sanh, bi€u dien thur nhat
duogc thiét 1ap vai mot mach RLC mac noi ti€p trong khi biéu dién thir hai nhan dugc véi mdt mach RLC mac song song.
Vi tiéu tan nang lugng gay ra do dién tro, ca hai mo hinh dugc két hgp vdi mot ham Hamilton toan phuong mo ta nang lugng
tong. Piém thu vi la cau trac mach anh hudng két qua thiet 1ap. M6 phong so6 dugce thuc hién dé minh hoa céc két qua.

Tir khéa: Mach dién; biéu dién Hamilton; tiéu tan nang luong.

1. Introduction % = f(x)+ g(x)u; x(t=0)=x,,, (1)

This paper deals with dynamical systems [1, _ _ _
2] whose dynamics are described by a set of ~ Where x=x(¢) is the state vector contained in

Ordinary Differential Equations (ODEs) and  the operating region D cR”, f(x)er"
affine in the input u as follows: expresses the smooth function with respect to the
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vector x. The input-state map and the control
input are respectively represented by g(x)e
R™™ and u eR™. Electrical, electromechanical
or biochemical systems, etc. are typical
examples of such systems [3-5].

From the energy-based point of view for
modelling, writing the original dynamics (1) into
the port-Hamiltonian (pH) representation is
crucial to express the transformation of energy
within the system [6, 7]. In other words, once a
canonical form [8, 9], i.e. the pH representation
of the dynamics (1), is somehow found, then a
so-called energy balance equation (EBE) can be
obtained. In turn, this equation allows
expressing the transformation of energy,
including the energy supply, storage and
dissipation, etc. On the other hand, the resulting
pH representation is well suited for passivity-
based control [10, 11], control by
interconnection [12-14], energy/power shaping
control [6, 15] or setpoint tracking control [16].
Obtaining the pH representation of given
dynamics is a key challenge in the structural
modelling framework, and it is the main focus of
this work.

This paper is organized as follows. Section 2
provides a brief overview of the pH
representation of dynamical systems. Section 3
is devoted to the pH formulation of two dynamic
electrical systems. Further discussions are also
included. Section 4 ends the paper with some
concluding remarks.

Notations: The following notations are
considered throughout the paper:

e R is the set of real number.
e T isthe matrix transpose operator.
e m and n (m<n) are the positive integers.

x. . is the initial value of the state vector.

init

2. An introductory overview of port-
Hamiltonian systems

This section briefly recalls the fundamentals
of port-Hamiltonian systems [8, 9] (see also
[17]). Assume that the function f(x) verifies
the so-called separability condition [7, 18], that
is, f(x) can be decomposed and expressed as
the product of some (interconnection and
damping) structure matrices and the gradient of
a potential function with respect to the state
variables, i.e., the co-state variables:

r=D-REIEY, g

where J(x) and R(x) are the nxn skew-
symmetric  interconnection  matrix  (i.e.
J(x)=-J(x)") and the nxn symmetric
damping  matrix  (ie.  R(x)=R(x)"),
respectively while H (x): R” — R represents
the Hamiltonian storage function of the system
(possibly related to the total energy of the
system). Furthermore, if the damping matrix
R (x) is positive semi-definite, i.e.

R(x)ZO, 3)

then the original dynamics (1) is said to be a
port-Hamiltonian (pH) representation with
dissipation [8, 9]. Equation (1) is completed with
the output and then rewritten as follows:

1) R P g e .
T@H(x)
y:g(x) 7

where y is the output.

It can be clearly seen for the pH model
defined by Egs. (3) and (4) that the time
derivative of the Hamiltonian storage function
H(x) satisfies the energy balance equation
(EBE) [6].
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dt ox

dissipation

dH (x) _ {3]{(’5)] R(x)aHa—)(Cx)+uTy- ®)

It can be shown from Eqg. (3) that the energy
dissipation, defined by

d:-[aHa—)(c’“)} R(x)aHa—)(Cx)SO 6)

is negative semi-definite. Hence, it represents a
loss of energy due to resistive elements. The
EBE (5) becomes:

dH(x)
Cdt

%/_/

stored power

< uTy ) (7

supplied power

From a physical point of view, inequality (7)
implies that the total amount of energy supplied
from external source is always greater than the
increase in the energy stored in the system.
Hence, the pH system (4) is said to be passive
with input » and output y corresponding to the
Hamiltonian storage function [2] (we also
refer the reader to [16] for further discussion).

In what follows, series and parallel
circuits are used to illustrate and show the way
to achieve a pH representation from given
dynamics. For that purpose, the following
lemma is adopted.

Lemma 1. Given a square matrix A. It
follows that

A-A" A4+ 4"
A= + :
2 2
%/_/
skew-symmetric symmetric

3. Two case studies
3.1. Case study 1: A series circuit
3.1.1. Circuit description

We consider next a simple electrical system,
which is the series circuit as sketched in
Figure 1.

R
wa

V(t)i(@ @ T ¢

voltage source ;

remsto
mduc or

capacitor H

Figure 1. A series RLC circuit [19].

Before proceeding any further, we remind
Kirchhoff's voltage law
u, +u, +u. =V, (8)

and constitutive equations considered for three
passive elements

the resistor R : u, = Ri,,

the inductor L: ¢, = Li, and u, = a;i;’ 9)

qu

the capacitor C: i, = and g, = Cu,,
t

where g, and ¢, are the charge stored in the
capacitor C and the magnetic flux linkage
through the inductor L, respectively; while i is
the electric current passing through the circuit
(i=i,=i.=1i,) and u, is the voltage of the
inductor L (similarly for u, and u,).

3.1.2. Port-Hamiltonian formulation

Let x:=(qg..4,)" be the vector consisting of
the charge g, and the magnetic flux linkage ¢,
. It can be shown from Eq. (9) that ¢, = dc;ﬁ

From Egs. (8) and (9), one has [6, 20]:

dg. 1

e _ 4 10

AL (10)

dg, 1 R

it AL S /4 11

=—dc— T (1)

Proposition 1 ([20]). Equations (10) and (11)
constitute a pH representation described by (4)

with x:=(g..4, )T and
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0= ] o) 12)
R<x>=[§ ?J (13)

0
-1} aa)
u="v, (15)
1
e (16)

Furthermore, the system is passive with the
Hamiltonian defined by

1, 1 5
H(x)=— — . 17
(x)=554 +57 )
Proof. It follows from Eqgs. (1), (10) and (11)
1
Z¢L
that f'(x) = . | which can be
_EQC_Z¢L
lq
0 | ¢ %c
rewritten as f(x)=( j ¢ Let
-1 -RJ)| 1
Z¢L

0 1
A=
s

Lemma 1. This concludes the proof.

], one may write 4 =J—Rusing

Remark 1. The Hamiltonian (17) is equal to
the total energy of the system (i.e., it
characterizes the amount of energy stored in
capacitor and inductor). Hence it has the unit of
energy [20].

Remark 2. From Eq. (6), it follows that
2
d:—R(%@J =—Ri*<0, (18)

which is precisely the power dissipated in
the resistor.

3.2. Case study 2: A parallel circuit
3.2.1. Circuit description
Next, we consider a parallel circuit as

sketched in Figure 2.

3
R
I
1
Q

I/d;(

Figure 2. A parallel RLC circuit.

Kirchhoff's current and voltage laws in this
case are

i=iy+ig, (19)
u, +u.=V. (20)
Note that i =7, and u, =u,.
3.2.2. Port-Hamiltonian formulation
Using Egs. (9), (19) and (20), one obtains [6]:
dq. 1 1

e =4 21
dt rc e L@ 1)
dg, 1

L= — g 4V, 22
dt c e (22)

Proposition 2. Equations (21) and (22)
constitute a pH representation similar to that of
Proposition 1 except

Lo
R(x)z R . (23)
0 0
Proof. It follows from Eqgs. (1), (21) and (22)
1 1
_E‘Ic +Z¢L

which can be

that f'(x) = | :

_ch
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1
_l 1 ch

rewritten  as f(x)=| R |
-1 0 Z¢L

) 1
Consider A=| R ,
-1 0

A=J—Rusing Lemma 1. This concludes the
proof.

one may write

Remark 3. The Hamiltonian in this parallel
RLC circuit is also equal to the total energy of
the system. Hence it has the unit of energy.

Remark 4. From Eq. (6), it follows that

(1 Y 1
d:_E(EqC] =—EuéSO, (24)

which is also equal to the power dissipated in
the resistor. This is because the damping matrix

R(x) now has a similar structure (see Egs. (13)
1

and (23)) and —%ué — =R,

Remark 4. For the case when the inductor is
not ideal, i.e. it can be considered as a pure
inductor connected in series with a resistor, the
results in Propositions 1 and 2 remain valid with
adequate modifications. For example, it can be
shown using the same arguments that

0O O
R(x)= for the series
0 R+R,

circuit, where R, is the resistance of the
inductor.

Table 1 summarizes the main features of the
two proposed pH formulations.

Table 1. Features of the two pH formulations.

The pH model with the series circuit [The pH model with the parallel circuit
X (QC’¢L)T (qC’¢L)T
J(x) is given by Eq. (12) has the same form

is given by Eq. (13)

given by Eq. (23)

is given by Eq. (14)

has the same form

is given by Eq. (15)

has the same form

has the same form

is given by Eq. (17)

u
y is given by Eq. (16)
( (unit of energy)

has the same form

It is important to note that the energy
dissipation in both formulations is strongly
related to the value of the resistive element of the
circuit, that is, the resistor. For the sake of
illustration, Figure 3 shows the time evolution of
state variables, while Figure 4 shows the
dissipation of the two circuits where u is the
Heaviside function (i.e. the unit step function)

and the circuit elements are chosen as
R=05(Q2), L=625(H) and C=4(F) [19]
(we refer the readers to Appendices A and B for
the Simulink models). Unlike the the parallel

circuit, the magnetic flux linkage through
the inductor (or, equivalently, the current) of the
series system is equal to O at permanent
phase, there will be no dissipation in the resistor.



46 Le Phuong Quyen, Hoang Ngoc Ha / Tap chi Khoa hoc va Cong nghé Dai hoc Duy Tdan 04(65) (2024) 41-48

4. Conclusion

8
6 The series RLC | |
ol L ~oThepealel ALE In this paper, the pH formulations of transient
’ Ny ~ ] parallel and series RLC circuits are proposed
0 » . and compared. The resulting Hamiltonian
0 50 100 150 . . . . .
Time (s) representations admit the quadratic Hamiltonian
b R ——— storage functions, which have the unit of energy
or s | while the energy dissipation is strongly related
< 52 1 . .
o /\/\/“ to the resistor. It remains now to adapt the
setpoint tracking control theory [16] to stabilize

0 50 100 150

Time (s) the systems at a desired setpoint.
Figure 3. Time evolution of the states. Acknowledgements
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Figure 4. Dissipation of the two circuits.

Appendix A. The Simulink model of the series circuit
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Appendix B. The Simulink model of the parallel

(O—> ¢
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